
The Million-Variable ‘‘March’’ for Stochastic

Combinatorial Optimization

LEWIS NTAIMO and SUVRAJEET SEN
Department of Systems and Industrial Engineering, The University of Arizona, Tucson,

Az 85721, USA (e-mail: nlewis@sie.arizona.edu)

(Received 1 May 2004; accepted in revised form 13 May 2004)

Abstract. Combinatorial optimization problems have applications in a variety of sciences and
engineering. In the presence of data uncertainty, these problems lead to stochastic combina-
torial optimization problems which result in very large scale combinatorial optimization

problems. In this paper, we report on the solution of some of the largest stochastic combi-
natorial optimization problems consisting of over a million binary variables. While the
methodology is quite general, the specific application with which we conduct our experiments

arises in stochastic server location problems. The main observation is that stochastic combi-
natorial optimization problems are comprised of loosely coupled subsystems. By taking
advantage of the loosely coupled structure, we show that decomposition-coordination meth-

ods provide highly effective algorithms, and surpass the scalability of even the most efficiently
implemented backtracking search algorithms.

Key words: Combinatorial optimization, Stochastic mixed integer programming, Stochastic
server location

1. Introduction

Combinatorial optimization problems provide some of the most important,
and challenging problems in computer science and operations research (CS/
OR) (Cook et al., 1998). These optimization problems are characterized by
discrete-choice variables for which 0 or 1 are the only possible values that
can be assigned. One example of such a problem is the network design prob-
lem that determines which nodes and arcs should be built so as to provide
network services at least ‘‘cost.’’ Despite several decades of advances in CS/
OR, combinatorial optimization problems continue to evoke parallels with
galactic dimensions. For instance, a combinatorial optimization problem
(e.g. network design) with 1000 variables can lead to a search space with
21000 decision states! This is sometimes referred to as ‘‘combinatorial explo-
sion.’’ Moreover, these notorious problems belong to the class of NP-hard
problems for which ‘‘good’’ algorithms are unlikely. It is no surprise that
combinatorial optimization remains a ‘‘Grand CS/OR Challenge’’ problem.
It turns out that the challenge of combinatorial optimization is magnified

many-fold in cases where data is uncertain. For instance, a network design

Journal of Global Optimization (2005) 32: 385–400 � Springer 2005
DOI 10.1007/s10898-004-5910-6



problem in which customer locations are unknown leads to a stochastic
combinatorial optimization (SCO) problem. Even the smallest of practical
SCO problems lead to an astronomical number of decision states, and eas-
ily exceed current computational capabilities. As one might expect, SCO
problems provide an even grander challenge. In this paper, we report on
the solution of instances with the largest data sets for SCO problems to
date. These instances, one of which contains over a million binary (0–1)
variables, represent data for stochastic server location problems (SSLP) in
which servers have to be located prior to demand realization.
These problems (SSLP) are said to have had a significant role in the eco-

nomic downturn associated with the telecommunications sector of the US
economy. Unfortunately, the lack of algorithms for solving SSLP has
prompted industry to use planning models that are based on one (deter-
ministic) forecast. The telecommunications sector is now awash in unused
server capacity that has resulted from a combination of inaccurate fore-
casts, and an over-reliance on deterministic planning. In a volatile econ-
omy, planning models should recognize that forecasts can be error prone,
and should seek plans that are robust to forecasting errors. One approach
that provides robust plans is known as stochastic programming (SP) (Birge
and Louveaux, 1997) and incorporates multiple scenarios within a planning
model. Over a decade ago, (Sen et al., 1994) used the SP planning method-
ology to an industrial-sized network planning problem for Sonet-Switched
Networks (SSN), and demonstrated improved network performance due to
the SP model. Subsequently, others have reported solving the SSN instance
using advanced computing architectures such as grid-computing (Linderoth
and Wright, 2003). However, the types of algorithms used to solve SSN
are based on stochastic linear programming, and do not allow binary vari-
ables. Networks that are being implemented today consist of high speed
optical fiber cables, and high speed optical switches which are very capital
intensive. In addition, service providers like AT&T are unsure of customer
demand (Doverspike, 2003). Network design models under these circum-
stances lead to SSLP, which is the class of models studied here. Unfortu-
nately, network designers have not had access to algorithms that can solve
SSLP of realistic dimensions.
In this paper, we present a SP model of SSLP, and report on the perfor-

mance of an algorithm called the D2 method (Sen and Higle, 2000; Sen
et al., 2002). This method refers to disjunctive decomposition which com-
bines a particular divide-and-conquer paradigm with cutting planes1 based
on disjunctive programming (Balas, 1979). Unlike pure backtracking-search

1A cut is a linear inequality that is implied by the binary restrictions and other inequalities defining

the instance.

386 L. NTAIMO AND S. SEN



(branch-and-bound, B&B) algorithms that search the decision space, the
divide-and-conquer approach of D2 refers to ‘‘conquering’’ smaller models
which are coordinated in such a manner as to solve the larger model.
Mathematically such an approach is sometimes referred to as a decomposi-
tion-coordination approach. Our computational experiments illustrate that
for all but the smallest of instances, standard B&B algorithms are unable
to solve these SSLP instances. However, decomposition-coordination
allows the D2 algorithm to solve these very large instances with reasonable
computational effort.
This paper begins with a statement of the stochastic server location

problem (SSLP) as a stochastic combinatorial optimization model. We then
proceed with a brief summary of previous computational experience with
SCO models. Following this, we present our experimental setup and our
computational results with SSLP. These experiments demonstrate that new
decomposition methods (e.g., D2) provide a powerful tool for stochastic
combinatorial optimization. The D2 algorithm is derived in (Sen and Higle,
2000) and illustrated in (Sen et al., 2002).

2. Stochastic Server Location Problems

The stochastic server location problems (SSLP) we study find applications
in a variety of domains (Wang et al., submitted for publication) such as
network design for electric power, internet services, telecommunications,
and water distribution. In particular, consider a set of possible customer
buildings in a metropolitan area for which a service provider is interested
in installing optical fibers and switching equipment in the most profitable
manner. Due to the uncertainty regarding the customer base for high speed
services, telecommunications providers often adopt a very conservative
approach to capital investment, leading to potential losses in revenue (Do-
verspike, 2003). Such problems are common in practice (Doverspike, 2003)
and can be formulated as the SSLP. Because of the variety of application
domains for SSLP, we use the names server and client in a generic sense.
Stochastic programming (SP) approaches to such decision problems

incorporate uncertainty via a collection of future scenarios. The plan (e.g.
servers to be located) is to be chosen in such a way that the system per-
forms well under those future scenarios that are deemed possible. By a
‘‘scenario’’ we refer to a set of potential clients that do materialize, and a plan
is evaluated against all foreseeable future scenarios. In contrast, traditional
(deterministic) combinatorial optimization models recommend decisions
under the assumption that only one scenario is possible in the future. It is
the need to accommodate a large number of future scenarios that leads to
very large scale SCO models. So long as a SCO model allows a fairly large
number of scenarios, there is no loss of generality in assuming that there

COMBINATORIAL OPTIMIZATION 387



are only a finite number of scenarios that are possible in the future.
Then each scenario may be associated with a probability of occurrence,
denoted px, x 2 X (the entire collection of scenarios). For such stochastic
optimization models, it is common to optimize ‘‘expected costs’’ (Birge and
Louveaux, 1997).
Figure 1 gives an illustration of the stochasticity in the SSLP. The figure

shows two scenarios, 1 and 2. For scenario 1 we have 4 potential server
locations and 12 potential clients (see panel a) of Figure 1. In (panel b),
which depicts the clients that materialize in scenario 1, only 8 out of the 12
potential clients are available for service. Figure 1 panel c shows the opti-
mal server locations if we only plan for scenario 1. For scenario 2 we again
have 4 potential server locations and 12 potential clients. However in this
scenario, only 6 out of the 12 potential clients are available for service (see
panel b). In this case the optimal server locations are at the two sites
shown in panel c). Although Figure 1 shows the optimal server locations
and client-server assignments for each scenario, the goal of the SSLP is to
find the overall optimal server locations (see panel d) which accommodate
all foreseeable scenarios. In this case the overall optimal solution is not
optimal for either of the two scenarios. In the next subsection we formally
give two model formulations for the SSLP.

2.1. MODEL FORMULATION

Let I and J be index sets for the clients and servers, with jI j ¼ n and
jJ j ¼ m. Let Z denote a given set of zones. For i 2 I and j 2 J we define
the following:

Figure 1. SSLP illustration.

388 L. NTAIMO AND S. SEN



Data:
cj Cost of locating a server at location j
qij Revenue from client i being served by server at location j
dij Client i resource demand from server at location j
u Server capacity
v An upper bound on the total number of servers that can be located
wz Minimum number of servers to be located in zone z 2 Z
J z The subset of server locations that belong to zone z

hiðxÞ ¼
1; it if client i is present in scenario x; x 2 X;

0; otherwise:

(

hðxÞ Client availability vector for scenario x 2 X with elements hiðxÞ,
i 2 I

px Probability of occurrence for scenario x 2 X

Decision variables:

xj ¼
1; if a server is located at site j;

0; otherwise:

(

yx
ij ¼

1; if client i is served by a server at location j under scenario x;

0; otherwise:

(

The essence of the SSLP may be described as follows. Suppose that
we place a server at location j. Then, this allocation costs cj, and pro-
vides enough capacity to serve up to u amount of resource to clients.
The revenue generated by serving client i from location j, is denoted
qij. There is also a shortage cost (penalty) qjo for each unit of demand
that remains unserved among the clients assigned to server j. If client i
is served by a server at location j, it uses dij units of resource from the
server. Note that the dependence of resource utilization (dij) on the
client–server pair allows us to model losses occurring from assigning client
i to server j. Such considerations are important in certain networks like
electricity and water. In cases where the losses are negligible (at least for
planning purposes), one could use the same value of dij for all j, as long as
i is fixed.
As far as operational considerations are concerned, we allow only one

server to be installed at each location and each client can only be served
by one server. There is also a requirement that a minimum number of serv-
ers denoted wz, z 2 Z be located in a given area or zone. Finally, the prob-
lem is to choose locations of servers and client–server assignments that
maximize the total expected revenue subject to the given constraints. The
SSLP can be stated as follows:

COMBINATORIAL OPTIMIZATION 389



Min
X
j2J

cjxj �
X
x2X

px

X
i2I

X
j2J

qx
ij y

x
ij �

X
j2J

qx
j0y

x
jo

 !
ð1aÞ

S.t.
X
j2J

xjOv; ð1bÞ
X
j2J z

xjPwz; 8z 2 Z ð1cÞ
X
i2I

dijy
x
ij � yx

j0Ouxj; 8j 2 J ; i 2 I ; x 2 X; ð1dÞ
X
j2J

yx
ij ¼ hiðxÞ; 8i 2 I ; x 2 X; ð1eÞ

xj 2 f0; 1g; 8j 2 J : ð1f Þ
yx
ij 2 f0; 1g; 8i 2 I ; j 2 J ; x 2 X: ð1gÞ
yx
j0P0; 8j 2 J ; x 2 X: ð1hÞ

Formulation (1a–1h) is the so called deterministic equivalent problem
(DEP) in stochastic programming. When one solves this problem, one
obtains a recommendation to locate servers in locations that will hedge
against a variety of scenarios in which certain clients do not materialize.
The variables yx

ij are decisions that will be implemented in the future, when
scenario x is finally observed. The location variables ðxÞ are referred to as
first-stage decisions, and the assignment variables ðyxÞ are referred to as
recourse (or second-stage) decisions. Unlike the first-stage variables, the
latter are dependent on the scenario x.
The constraints provide a mechanism to impose the operational require-

ments. Thus constraints (1b) satisfy the requirement that only up to a
total of v available servers can be installed. The zonal requirements that spe-
cify how many servers are necessary in each zone are given by
constraint (1c). Constraints (1d) dictate that a server located at site j
can serve only up to its capacity u. We have introduced a variable yx

j0 in
this constraint to accommodate any overflows that are not served due
to limitations in server capacity. These overflows result in a loss of
revenue at a rate of qx

j0. Unlike the deterministic version of such
problems, the inclusion of an artificial variable may allow a client to
be assigned to servers that are not located. However, penalty costs asso-
ciated with such an assignment may result in such high costs as to
preclude it in an optimal solution, unless server capacity is so limited
that some clients have to be turned away. For cases in which the
server capacities are severely restricted, linear overflow costs may not

390 L. NTAIMO AND S. SEN



provide an appropriate modeling tool and an extension of this model may
be necessary. Since most of our experiments will be conducted on instances
with sufficient server capacity, overflows will be zero, and linear overflow
costs will suffice.
Continuing with a description of the rest of the model, the requirement

that each available client is served by only one server is given by con-
straints (1e). Constraints (1f) and (1g) are the binary restrictions on the
decision variables. Finally, constraints (1h) are the nonnegativity require-
ments on the overflow variables.
If we denote the number of scenarios by S, where S ¼ jXj, and the

number of zones by jZj, then this DEP formulation has mð1þ nSÞ
variables and mþ jZj þ ðmþ nÞS constraints. The number of scenarios can
be very large in general and therefore, this formulation is a large scale pro-
blem and can get out of hand very quickly. Hence, the need to decompose
it. For example, for a problem instance with 10 potential servers, 50 poten-
tial clients and 2000 scenarios, with no zonal constraints, we have
1,000,010 binary variables and 120,010 constraints!
The above formulation can be considered as a basic model from which

other SSLP models can be extended. For instance, we can easily make an
extension to a SSLP with multiple server types each with a different capa-
city. Thus we can simply define new variables for each server type and add
new constraints on the server type requirements to the model. In any event,
the additional constraints would depend on the specific application at
hand.
We will now decompose the DEP into a two stage SMIP with complete

recourse and binary variables in both stages. The two stage SSLP can be
formally stated as follows:

Min
X
j2J

cjxj � E½ fðx; ~xÞ� ð2aÞ

S.t.
X
j2J

xjOv; ð2bÞ
X
j2J z

xjPwz; 8z 2 Z ð2cÞ

xj 2 f0; 1g; 8j 2 J ; ð2dÞ
where E½�� is the usual mathematical expectation with

E½ fðx; ~xÞ� ¼
X
x2X

px fðx;xÞ;

and for any x satisfying the constraints (2b)–(2d) and x 2 X we define

COMBINATORIAL OPTIMIZATION 391



fðx;xÞ ¼ Min�
X
i2I

X
j2J

qijyij þ
X
j2J

qj0yj0 ð3aÞ

S.t.
X
i2I

dijyij � yj0Ouxj; 8j 2 J ; ð3bÞ
X
j2J

yij ¼ hiðxÞ; 8i 2 I ; ð3cÞ

yij 2 f0; 1g; 8i 2 I ; j 2 J ; ð3dÞ
yj0P0; 8j 2 J : ð3eÞ

As before, the xj’s are the first-stage decision variables. We observe that
although the second-stage (recourse) variables yij’s continue to depend on
the outcome x, this dependence is not explicitly indicated here. This is
because the subproblem for each outcome x is decoupled from all other
outcomes once a vector x is given. This formulation emphasizes the loosely
coupled nature of SCO problems, and while this decomposition framework
has been extensively used for stochastic linear programming (Cook et al.,
1998), its use for SCO problems has been limited. Readers familiar with
the current state of computations with SCO should feel free to proceed to
Section 4.

3. The ‘‘March’’ Thus Far: Previously Solved SCO Instances

Before presenting our computational results, it is appropriate to briefly
examine previous computational experiments with SCO problems. This sec-
tion also serves to illustrate the variety of applications in which uncertainty
must be accommodated within combinatorial optimization. Table I gives a
summary of some of the largest SCO instances that have been reported.
The first three instances are available on the SIP test problem library

Table I. Summary of previously reported of SCO problems (DEP)

Name (cite) Scenarios Variables Binaries Integers Constraints

dcap243_500 (Ahmed and Garcia,

in press, Ahmed et al., in press)

500 18,018 18,006 9012

SEMI4 (Barahona et al., 2001) 4 39,820 612 23,370

SIZES10 (Jorjani et al., 1995) 10 825 110 341

SSCh_c5 (Alonso-Ayuso et al., 2003) 23 3768 114 3933

SGAP_28 (Albareda-Sambola et al., 2002) 45 2745 2745 2835

SVRP_100 (Laporte et al., 2002) a 10,000 10,000 b

E160-2_FRP (Alonso et al., 2000) 15 16,753 16,753 32,455

a – The recourse function has a closed-form expression. b – IP formulation has exponentially many

constraints.

392 L. NTAIMO AND S. SEN



(http://www.isye.gatech.edu/�sahmed/siplib/). The sizes of the instances
shown are for the corresponding DEP formulation.
Problem dcap243 500 is a two-stage stochastic integer program arising in

dynamic capacity acquisition and allocation under uncertainty. The prob-
lem has complete recourse, mixed-integer first-stage variables, pure binary
second-stage variables, and discrete distributions. The formulation and
computational results for this class of problems are reported in (Ahmed
and Garcia, in press) and (Ahmed et al., in press), respectively.
SEMI4 is a two-stage multi-period stochastic integer problem that arises

in planning semiconductor tool purchases. This model, which has mixed-
integer first-stage variables and continuous second-stage variables, was
solved by researchers at IBM (Barahona et al., 2001). Problem SIZES10 is
an instance of a two-stage multi-period stochastic mixed-integer program
arising in the product substitution applications. The problem formulation
and data are given in (Jorjani et al., 1995).
Problem SSCh_c5 is an instance of a strategic supply chain planning

problem under uncertainty with continuous and binary variables. This
problem appears in (Alonso-Ayuso et al., 2003) as problem c5. SGAP_28
is an instance of a stochastic generalized assignment problem and is
reported in (Albareda-Sambola et al., 2002) as problem instance number
28. The reformulation of this problem has both continuous and binary
variables. Problem SVRP_100 is a stochastic vehicle routing problem
(SVRP) in which the first stage decisions chart a route for each vehicle and
the second stage calculates an expected penalty cost for not completing a
route in case of excess demand (Laporte et al., 2002). The last instance in
the table is a full recourse policy model for the air traffic flow management
problem (TFMP) under uncertainty in airport arrival and departure and
airspace due to weather conditions (Alonso et al., 2000).
An examination of the data in Table I reveals that the total number of

integer variables in these SCO problems is not more that 20,000 for the
DEP formulation. One may consider SCO instances of this size as repre-
senting the current state of the art.

4. A ‘‘Leap:’’ Computations with Million Variables

In this section, we report our computational experience in using the D2

algorithm to solve instances whose DEP formulations are an order-of-mag-
nitude larger than those discussed in the previous section. We compare our
computational results with those obtained by the ILOG CPLEX 7.0 pro-
gramming system (ILOG, 2000). It is widely recognized that the latter is
among the more efficient commercial systems that implement B&B (back-
tracking search).

COMBINATORIAL OPTIMIZATION 393



4.1. PROBLEM INSTANCE GENERATION

A number of instances of problem (2–3) were generated randomly as fol-
lows. Problem data were randomly generated from the uniform distribution
while scenario data were generated from the Bernoulli distribution. The
server location costs were generated randomly from the uniform distribu-
tion in the interval [40, 80] and the client demands were generated in the
interval [0, 25]. The client-server revenue were set at one unit per unit of
client demand. The overflow costs qj0, for all j 2 J , were fixed at 1000,
which was a high enough penalty cost to warranty no overflows in the
optimal solution. The maximum number of servers to locate ðvÞ was set to
the total number of potential locations in the problem instance.
The scenario data were generated as follows. The availability of a poten-

tial client in each scenario was generated from the Bernoulli distribution
with p ¼ 0:5, with a 1 indicating the presence (availability) of the client
and a 0 indicating the absence (unavailability) of the client. For each prob-
lem instance the different sets of scenarios were generated using different
random seeds to allow for independent scenarios. Each scenario was given
an equal probability of occurrence and contained the outcomes for all the
clients in the problem instance. All scenarios were checked to make sure
that there were no duplicate scenarios in a given problem instance.
The degree of difficulty of an instance can be controlled by the ratio ðrÞ

of the total server capacity to the maximum possible total demand. This
ratio is defined by r ¼ v � u=

P
i2I Maxj2J fdijg, where the numerator is the

total server capacity and the denominator is the total maximum demand.
It reflects how much total server capacity is available to satisfy possible
maximum overall client demand. A value of rP1:0 means that the servers
can satisfy the total client demand while a value of r < 1:0 implies that ser-
ver capacity may be insufficient to satisfy client demand. Instances in which
the server capacity is highly limited, piecewise linear overflow costs may be
more appropriate.
As a mnemonic, the instances were named SSLP_m_n, where m is the

number servers and n the number of clients. The number of servers ranged
through m ¼ 5, 10, and 15 while the number of clients were set at n ¼ 25,
30, 45, and 50. The number of scenarios considered range from S ¼ 5 to
2000. In particular, we report results on the problem instances SSLP_5_25,
SSLP_5_50, SSLP_10_50, and SSLP_15_45, and briefly mention about the
other instances.

4.2. COMPUTATIONAL RESULTS

The D2 algorithm was implemented in C, with all small models (LP and
MIP) solved by using the ILOG CPLEX 7.0 (ILOG, 2000) callable library.
As a benchmark we applied the CPLEX MIP solver to the large scale DEP

394 L. NTAIMO AND S. SEN



formulation (1) for each of the two-stage problem instances with the
CPLEX parameters set at the following values: ‘‘set mip emphasis 1’’
(emphasizes looking for feasible solutions), ‘‘set mip strategy start 4’’ (uses
barrier at the root), and ‘‘branching priority order on x’’ (first branches on
any fractional component of x before branching on y). A CPU time limit
of 10,000 s was imposed and any problem instance run taking more than
this time limit was considered a ‘‘failure.’’ All the problems that took less
than this time limit converged to an optimal solution and the percentage
gap between the lower bound and the upper bound was equal to 0%. In all
our computational experiments the 0-1 master programs were solved to
optimality at each iteration.
All the experiments were run on a Sun 280R with 2 UltraSPARC-III+

CPUs running at 900 MHz. The results for the first set of experiments are
summarized in Tables II–V. The numbers of variables and constraints
shown are that of the DEP formulation. While most of the column head-
ings in the tables are self-explanatory, we should clarify the term % ZIP

Gap. Entries in this column indicate the percentage difference between the
optimal value of the SCO instance, and its continuous relaxation (which
can be solved using stochastic linear programming). Another observation
from the tables is that the number of D2 cuts added to the second stage
SMIP is less than the number of algorithmic iterations. This is because
D2 cuts are not generated in those iterations where all second stage
subproblem relaxations yield binary solutions. Finally, each CPU time

Table III. Computational results for problem instance SSLP_5_50

Scenarios Binaries Constraints % ZIP gap D2 iterations D2 cuts CPU time (secs)

D2 CPLEX

5 1255 276 21.75 28 6 0.52 0.30

10 2505 551 22.37 26 4 0.50 0.79

25 6255 1376 22.57 26 4 0.58 3.52

50 12,505 2751 20.74 33 11 1.64 10.35

100 25,005 5501 20.48 32 13 3.95 33.25

Table II. Computational results for problem instance SSLP_5_25

Scenarios Binaries Constraints % ZIP gap D2 iterations D2 cuts CPU time (secs)

D2 CPLEX

5 630 151 33.11 16 1 0.13 0.12

10 1255 301 21.25 17 5 0.22 0.46

25 3130 751 23.47 17 10 0.42 1.82

50 6255 1501 24.03 17 6 0.53 4.58

100 12,505 3001 24.93 17 10 1.03 14.69

COMBINATORIAL OPTIMIZATION 395



shown in the tables records an average of three runs for the problem
instance.
The experimental results for problems SSLP_5_25 and SSLP_5_50 are

given in Tables II and III, respectively. Note that for all problem instances,
the gap between the SLP objective of the DEP and the SMIP objective is
over 20%. Hence the stochastic linear programming (continuous) relaxation
of these SSLP instances does not provide very good approximations, and
combinatorial optimization becomes necessary. The D2 algorithm performs
better than CPLEX for all the problem instances except the smallest
instance of the second problem. We expect CPLEX to perform better on
smaller problem instances since there is some overhead in decomposing
small sized problems.
Table IV shows the results for the problem SSLP_10_50, which is much

larger and takes substantially much more time to solve. As expected

Table IV. Computational results for problem instance SSLP_10_50

Scenarios Binaries Constraints % ZIP

gap

D2

iterations

D2 cuts CPU time (secs) CPLEX %
gap

D2 CPLEX

5 2510 301 10.49 209 189 78.25 80.53

10 5010 601 11.38 264 257 171.49 Failed 0.19

25 12,510 1501 10.81 286 281 248.81 Failed 0.34

50 25,010 3001 10.89 252 250 295.95 Failed 0.44

100 50,010 6001 11.07 300 299 480.46 Failed 9.02

500 250,010 30,001 10.75 309 307 1902.20 Failed 38.17

1000 500,010 60,001 11.07 322 321 5410.10 Failed 99.60

2000 1,000,010 120,001 11.01 308 307 9055.29 Failed 46.24

Figure 2. CPU time for SSLP_10_50 using the D2 method.

396 L. NTAIMO AND S. SEN



CPLEX has the smallest CPU time on the smallest instance but fails to
solve the rest of the problems. On the other hand, the D2 method solves all
the problems in a reasonable amount of time. The last problem instance in
the table is the largest and has 1,000,010 variables and 120,010 constraints!
As shown in Figure 2 the performance of the D2 algorithm is linear with
increasing problem size. This is a desired algorithmic behavior for seal-abil-
ity. We also got similar results by increasing the number of clients to 75
(problem SSLP_10_75) but the computation times are about 1.4 times lar-
ger on average for all the scenarios.
Figure 3 shows a typical graph of convergence of upper and lower

bounds when applying the D2 method to SSLP_10_50. The results shown
are for problem instance SSLP_10_50 with 100 scenarios. As can be seen
in the figure, the lower bound increases close to the optimal value in less
than half the total number of iterations. However, good upper bounds are
calculated only after first-stage solutions stabilize and this causes the
method to continue for the remaining iterations without changing the
lower bound significantly. Once no changes are detected in the first-stage
solution, a good upper bound is calculated by solving the MIP subprob-
lems. This immediately lowers the upper bound. Moreover, a cut proposed
in (Laporte and Louveaux, 1993) is added without any additional compu-
tation, and the method typically stops after this iteration. For smaller
instances however (e.g., SSLP_5_25), the D2 cuts are sufficient to provide
linear relaxations which yield binary solutions for all scenarios. As the size

Figure 3. Convergence of the D2 algorithm for problem instance SSLP_10_50 with 100 scenarios.

COMBINATORIAL OPTIMIZATION 397



of m and n increase, it becomes difficult for the linear relaxation to provide
binary solutions, and solving the MIP becomes necessary to improve the
upper bound.
In Table V we report the results for problem SSLP_15_45 with the num-

ber of scenarios ranging over the set 5,10 and 15. These instances are evi-
dently much more challenging to solve since CPLEX could not even solve
the smallest instance. The D2 algorithm solves all the problem instances but
takes much longer than the time it takes to solve instances of problem
SSLP_10_50. These results show that while an increase in the number of sce-
narios do not affect the scalability of the D2 algorithm in an adverse way,
increases in the size of the master problem, (2a)–(2d), as well as the size of
the subproblems, (3a)–(3e), do have an adverse effect on scalability.
Table VI gives the results obtained for an experiment aimed at studying

the effect of the ratio of the total server capacity to the total maximum cli-
ent demand on the problem computational difficult. In particular, we con-
sider the performance of the D2 algorithm on the problem instance
SSLP_10_50 with 100 scenarios for different values of r ranging from 0.9
to 2.0. The CPLEX solver could not solve any of the DEP instances and
so we excluded the results from Table VI.
Decreasing r results in increased computational times, an indication that

tightly constrained instances are more computatioanlly demanding. The D2

algorithm solves all the problem instances, but it takes substantially longer
to solve the instances with r O 1:00. Despite the fact that the instances
associated with r ¼ 1, r ¼ 0:9 resulted in instances with smaller gaps

Table V. Computational results for problem instance SSLP_15_45

Scenarios Binaries Constraints % ZIP

gap

D2

iterations

D2 cuts CPU time (secs) CPLEX %

gap

D2 CPLEX

5 3390 301 6.88 146 145 110.34 Failed 1.19

10 6765 601 6.53 454 453 1494.89 Failed 0.27

15 10,140 901 5.62 814 813 7210.63 Failed 0.72

Table VI. Problem instance SSLP_10_50 with 100 scenarios for different values of r

Ratio r % ZIP gap D2 iterations D2 cuts D2 time

0.90 3.35 618 617 7896.97

1.00 6.03 543 542 5296.02

1.25 8.38 348 347 900.77

1.50 11.07 300 299 480.46

1.75 14.19 236 227 240.85

2.00 17.45 243 198 207.09

398 L. NTAIMO AND S. SEN



between an SLP relaxation, and the SMIP instance, tighter capacity con-
straints lead to several iterations in which the first stage solution leads to
overflows in the second stage. Therefore, the algorithm has to overcome
this ‘‘infeasibility’’ by generating possibly more first stage solutions (imply-
ing more algorithmic iterations) before converging to the optimal solution.

5. Conclusions

This paper presents computational results with the largest stochastic com-
binatorial optimization (SCO) instances to date. While the methods dis-
cussed in this paper are applicable to a variety of SCO problems, our
computational results are presented for the stochastic server location prob-
lem (SSLP). These and other SCO problems result in very large scale
instances which are comprised of loosely coupled subsystems. By taking
advantage of the loosely coupled structure of SCO problems, we show that
the divide-and-conquer paradigm of decomposition-coordination methods
provide a highly effective algorithm, and surpasses the scalability of even
the most efficiently implemented backtracking search algorithms. Notwith-
standing the success reported here, the challenge of solving more general
SMTP problems still remains (Sen, 2003). The design and analysis of
approximations/heuristics for large scale SCO also remains an open
research area (Stougie and van der Vlerk, 2003).

Acknowledgments

This research was funded by grants from the OR Program (DMII-
9978780), and the Next Generation Software Program (CISE-9975050) of
the National Science Foundation. We would like to thank Bob Bixby for
confirming our experience with CPLEX and guiding the choice of parame-
ter settings. The finishing touches on this paper were completed during the
second author’s visit to Carisma, Brunel University, under an EPSRC
grant to Gautam Mitra. This collaboration is gratefully acknowledged. We
are grateful to Bob Doverspike (AT&T Research), Madhav Marathe (Los
Alamos National Labs), David Morton (University of Texas, Austin) and
Maarten van der Vlerk (University of Groningen, Netherlands) for their
comments on an earlier version of the paper.

References

Ahmed, S. and Garcia, R. (in press), Dynamic capacity acquisition and assignment under
uncertainty, Annals of Operational Research.

Ahmed, S., Tawarmalani, M. and Sahinidis, N.V. (in press), A finite branch and bound
algorithm for two-stage stochastic integer programs, Mathematical Programming. http://
www.isye.gatech.edu/so/publications/.

COMBINATORIAL OPTIMIZATION 399



Albareda-Sambola, M., van der Vlerk, M.H. and Fernandez, E. (2002), Exact solutions to a

class of stochastic generalized assignment problems. Research Report 02A11, SOM,
University of Groningen, The Netherlands, http://som.rug.nl.

Alonso, A., Escudero, L.F. and Ortuńo, M.T. (2000), A stochastic 0-1 program based ap-

proach for the air traffic flow management problem. European Journal of Operations
Research 120, 47–62.

Alonso-Ayuso, A., Escudero, L.F., Garı́n, A., Ortuńo, M.T. and Perez, G. (2003), An ap-

proach for strategic supply chain planning under uncertainty based on stochastic 0–1
programming. Journal of Global Optimization 26, 97–124.

Balas, E. (1979), Disjunctive programming. Annals of Discrete Mathematics 5, 3–51.

Barahona, F., Bermon, S., Gunluk, O. and Hood, S. (2001), Robust capacity planning in
semiconductor manufacturing. IBM Research Report RC22196, IBM.

Birge, J.R. and Louveaux, F.V. (1997), Introduction to Stochastic Programming, Springer,
New York.

Cook, W.J., Cunningham, W.H., Pulleyblank, W.R. and Schrijver, A. (1998), Combinatorial
Optimization, John Wiley and Sons, New York.

Doverspike, R.D. (2003), Private communication.

ILOG, IL. (2000), CPLEX 7.0 Reference Manual, ILOG CPLEX Division, Incline Village,
NV.

Jorjani, S., Scott, C.H. and Woodruff, D.L. (1995), Selection of an optimal subset of sizes.

Technical report, University of California, Davis, CA.
Laporte, G. and Louveaux, F.V. (1993), The integer L-shaped method for stochastic integer

programs with complete recourse. Operations Research Letters 1, 133–142.
Laporte, G., Louveaux, F.V. and van Hamme, L. (2002), An integer L-shaped algorithm for

the capacitated vehicle routing problem with stochastic demands, Operations Research 50,
415–423.

Linderoth, J. and Wright, S.J. (2003), Decomposition algorithms for stochastic programming

on a computational grid. Computational Optimization and Applications 24, 207–250.
Sen, S. (2003), Algorithms for stochastic mixed-integer programming models. In: Aardal, K.,

Nemhauser, G. and Weismantel, R. (eds.), Stochastic Integer Programming Handbook,

Dordrecht, The Netherlands, Chapter 18. http://www.sie.arizona.edu/MORE/papers/
SIPHbook.pdf.

Sen, S., Doverspike, R.D. and Cosares, S. (1994), Network planning with random demand.

Telecommunications Systems 3, 11–30.
Sen, S. and Higle, J.L. (2000), The C3 theorem and a D2 algorithm for large scale stochastic

integer programming: Set convexification. Stochastic E-Print Series. http://dochost.rz.hu-
berlin.de/speps/.

Sen, S., Higle, J.L. and Ntaimo, L. (2002), A summary and illustration of disjunctive
decomposition with set convexification. In: Woodruff, D.L. (ed.), Stochastic Integer
Programming and Network Interdiction Models, Kluwer Academic Press, Dordrecht, The

Netherlands, Chapter 6.
Stougie, L. and van der Vlerk, M.H. (2003), Approximation in stochastic integer program-

ming. Research Report 03A14, SOM, Univ. of Groningen, The Netherlands. http://

www.ub.rug.n1/eldoc/som/a/03A14/03A14.pdf.

400 L. NTAIMO AND S. SEN


